Abstract

Deep neural network has been extensively applied to hyperspectral image (HSI) classification recently. However, its success is greatly attributed to numerous labeled samples, whose acquisition costs a large amount of time and money. In order to improve the classification performance while reducing the labeling cost, this article presents an active deep learning approach for HSI classification, which integrates both active learning and deep learning into a unified framework. First, we train a convolutional neural network (CNN) with a limited number of labeled pixels. Next, we actively select the most informative pixels from the candidate pool for labeling. Then, the CNN is fine-tuned with the new training set constructed by incorporating the newly labeled pixels. This step together with the previous step is iteratively conducted. Finally, Markov random field (MRF) is utilized to enforce class label smoothness to further boost the classification performance. Compared with the other state-of-the-art traditional and deep learning-based HSI classification methods, our proposed approach achieves better performance on three benchmark HSI data sets with significantly fewer labeled samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.