Abstract
A multiple-feature-based adaptive sparse representation (MFASR) method is proposed for the classification of hyperspectral images (HSIs). The proposed method mainly includes the following steps. First, four different features are separately extracted from the original HSI and they reflect different kinds of spectral and spatial information. Second, for each pixel, a shape adaptive (SA) spatial region is extracted. Third, an adaptive sparse representation algorithm is introduced to obtain the sparse coefficients for the multiple-feature matrix set of pixels in each SA region. Finally, these obtained coefficients are jointly used to determine the class label of each test pixel. Experimental results demonstrated that the proposed MFASR method can outperform several well-known classifiers in terms of both qualitative and quantitative results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Instrumentation and Measurement
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.