Abstract

ABSTRACT Hyperspectral images (HSIs) have transformed the field of remote sensing by providing researchers with a wealth of information about the Earth’s surface. However, analyzing these images can be an overwhelming task due to the presence of overlapping areas, nested regions, and large intra-class variability. Hyperspectral image classification (HSIC) is a crucial part of identifying the various land cover classes present in hyperspectral images. In order to enhance the accuracy of HSIC, researchers utilize the potential of three-dimensional convolutional neural networks (3D-CNNs). With the ability to influence both the spectral and spatial data present in HSIs, 3D-CNNs provide a promising solution to overcome the challenges associated with HSIC. In this paper, a new method for key band selection is proposed to improve the performance of 3D-CNN model. The proposed method selects the most relevant key bands based on Walsh-Hadamard kernel strength features. These key bands are then used to extract overlapping 3D spatial patches, which serve as input to the proposed 3D-CNN model. To evaluate the performance of the 3D-CNN model six standard benchmark datasets are used. The effectiveness of the proposed method improves the performance of 3D-CNN for HSIC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.