Abstract
In this paper, we propose a new method for hyperspectral image (HSI) classification using multi-layer superpixel graph and loopy belief propagation. A merging algorithm using graph based representation of image is applied to generate multi-scale superpixels in hyperspectral image at first. Then, we build a multi-layer superpixel graph and use loopy belief propagation to transmit messages between the superpixels and compute beliefs at each superpixel in our multi-layer graph for HSI classification. Experimental results with real hyperspectral data set demonstrate that our proposed method provides good performance and is competitive with some of the best available spectral-spatial methods for hyperspectral image classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.