Abstract

Locally linear embedding (LLE) depends on the Euclidean distance (ED) to select the k-nearest neighbors. However, the ED may not reflect the actual geometry structure of data, which may lead to the selection of ineffective neighbors. The aim of our work is to make full use of the local spectral angle (LSA) to find proper neighbors for dimensionality reduction (DR) and classification of hyperspectral remote sensing data. At first, we propose an improved LLE method, called local spectral angle LLE (LSA-LLE), for DR. It uses the ED of data to obtain large-scale neighbors, then utilizes the spectral angle to get the exact neighbors in the large-scale neighbors. Furthermore, a local spectral angle-based nearest neighbor classifier (LSANN) has been proposed for classification. Experiments on two hyperspectral image data sets demonstrate the effectiveness of the presented methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call