Abstract

This paper presents a novel approach for the hyperspectral imagery (HSI) classification problem, using Kernel Fukunaga-Koontz Transform (K-FKT). The Kernel based Fukunaga-Koontz Transform offers higher performance for classification problems due to its ability to solve nonlinear data distributions. K-FKT is realized in two stages: training and testing. In the training stage, unlike classical FKT, samples are relocated to the higher dimensional kernel space to obtain a transformation from non-linear distributed data to linear form. This provides a more efficient solution to hyperspectral data classification. The second stage, testing, is accomplished by employing the Fukunaga- Koontz Transformation operator to find out the classes of the real world hyperspectral images. In experiment section, the improved performance of HSI classification technique, K-FKT, has been tested comparing other methods such as the classical FKT and three types of support vector machines (SVMs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.