Abstract
Hyperspectral image (HSI) classification is one of the most crucial tasks in remote sensing processing. The attention mechanism is preferable to a convolutional neural network (CNN), due to its superior ability to express information during HSI processing. Recently, numerous methods combining CNNs and attention mechanisms have been applied in HSI classification. However, it remains a challenge to achieve high-accuracy classification by fully extracting effective features from HSIs under the conditions of limited labeled samples. In this paper, we design a novel HSI classification network based on multiscale hybrid networks and attention mechanisms. The network consists of three subnetworks: a spectral-spatial feature extraction network, a spatial inverted pyramid network, and a classification network, which are employed to extract spectral-spatial features, to extract spatial features, and to obtain classification results, respectively. The multiscale fusion network and attention mechanisms complement each other by capturing local and global features separately. In the spatial pyramid network, multiscale spaces are formed through down-sampling, which can reduce redundant information while retaining important information. The structure helps the network better capture spatial features at different scales, and to improve classification accuracy. Experimental results on various public HSI datasets demonstrate that the designed network is extremely competitive compared to current advanced approaches, under the condition of insufficient samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.