Abstract
Hyperspectral image processing techniques involve time-consuming calculations due to the large volume and complexity of the data. Indeed, hyperspectral scenes contain a wealth of spatial and spectral information thanks to the hundreds of narrow and continuous bands collected across the electromagnetic spectrum. Predictive models, particularly supervised machine learning classifiers, take advantage of this information to predict the pixel categories of images through a training set of real observations. Most notably, the Support Vector Machine (SVM) has demonstrate impressive accuracy results for image classification. Notwithstanding the performance offered by SVMs, dealing with such a large volume of data is computationally challenging. In this paper, a scalable and high-performance cloud-based approach for distributed training of SVM is proposed. The proposal address the overwhelming amount of remote sensing (RS) data information through a parallel training allocation. The implementation is performed over a memory-efficient Apache Spark distributed environment. Experiments are performed on a benchmark of real hyperspectral scenes to show the robustness of the proposal. Obtained results demonstrate efficient classification whilst optimising data processing in terms of training times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.