Abstract

Abstract Due to the characteristics of hyperspectral images (HSIs), such as their high spectral resolution and multiple continuous narrow bands, HSI technology has become widely used in fields such as target recognition, environmental detection, and agroforestry detection. HSIs are subject, for various reasons, to noise in the processes of data acquisition and transmission. Therefore, the denoising of HSIs is very necessary and important. In this article, according to the characteristics of HSIs, an HSI denoising model combining principal component analysis (PCA) and CANDECOMP/PARAFAC decomposition (CP decomposition) is proposed, which is called PCA-TensorDecomp. First, we use PCA to reduce the dimension of HSI signals by obtaining the first K principal components and get the principal composite components. The low-rank part corresponding to the first K principal components is considered the characteristic signal. Then, low-rank CP decomposition is carried out, to denoise the first principal components and the remaining minor components, the secondary composite components, which contain a large amount of noise. Finally, the inverse PCA is then used to restore the HSIs denoised, such that the effect of comprehensive denoising is achieved. To test the effectiveness of the improved algorithm introduced in this article, we compare it with several methods on simulated and real hyperspectral data. The results of the analysis herein indicate that the proposed algorithm possesses a good denoising effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call