Abstract
Abstract. Wetlands and water-bodies are transitional lands between terrestrial and aquatic ecosystems that give many advantages. The presence of phenomena activities and artificial human activities cause changes on the Earth’s surface. This process causes the changes in land cover type especially in wetlands and water-bodies’ area. For monitoring and assessing resources like wetlands and water-bodies, it is necessary to be aware of these changes. Change detection and attribution of wetlands and water-bodies change over time present more challenges for correctly analysing remote sensing imagery. Hyperspectral images now have potential applications in many scientific areas due to their high spectral resolution and so their good information contents. The aim of this study is to propose a procedure for determining land surface changes within the semi-arid wetland and surrounding upland areas using the new method by combining machine Learning method for detecting change using EO-1 Hyperion satellite hyperspectral imagery. The study area is Shadegan wetlands in the south-west of Iran in Khuzestan province. The most critical water resources of the province are depleted and contain unprecedented levels of toxic waste. In addition, the results show the superiority of the implemented method to extract change map with overall accuracy by a margin of nearly 94% using multi-temporal hyperspectral.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.