Abstract

With the rise of machine learning, hyperspectral image (HSI) unmixing problems have been tackled using learning-based methods. However, physically meaningful unmixing results are not guaranteed without proper guidance. In this work, we propose an unsupervised framework inspired by deep image prior (DIP) that can be used for both linear and nonlinear blind unmixing models. The framework consists of three modules: 1) an Endmember estimation module using DIP (EDIP); 2) an Abundance estimation module using DIP (ADIP); and 3) a mixing module (MM). EDIP and ADIP modules generate endmembers and abundances, respectively, while MM produces a reconstruction of the HSI observations based on the postulated unmixing model. We introduce a composite loss function that applies to both linear and nonlinear unmixing models to generate meaningful unmixing results. In addition, we propose an adaptive loss weight strategy for better unmixing results in nonlinear mixing scenarios. The proposed methods outperform state-of-the-art unmixing algorithms in extensive experiments conducted on both synthetic and real datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.