Abstract

Band selection is an important data dimensionality reduction tool in hyperspectral images (HSIs). To identify the most informative subset band from the hundreds of highly corrected bands in HSIs, a novel hyperspectral band selection method using a crossover-based gravitational search algorithm (CGSA) is presented in this study. In this method, the discriminative capability of each band subset is evaluated by a combined optimisation criterion, which is constructed based on the overall classification accuracy and the size of the band subset. As the evolution of the criterion, the subset is updated using the V -shaped transfer function-based CGSA. Ultimately, the band subset with the best fitness value is selected. Experiments on two public hyperspectral datasets, i.e. the Indian Pines dataset and the Pavia University dataset, have been conducted to test the performance of the proposed method. Comparing experimental results against the basic GSA and the PSOGSA (hybrid PSO and GSA) revealed that all of the three GSA variants can considerably reduce the band dimensionality of HSIs without damaging their classification accuracy. Moreover, the CGSA shows superiority on both the effectiveness and efficiency compared to the other two GSA variants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call