Abstract

Anomaly detection is hampered by band redundancy and the restricted reconstruction ability of spectral–spatial information in hyperspectral remote sensing. A novel hyperspectral anomaly detection method integrating differential attribute profiles and genetic algorithms (DAPGA) is proposed to sufficiently extract the spectral–spatial features and automatically optimize the selection of the optimal features. First, a band selection method with cross-subspace combination is employed to decrease the spectral dimension and choose representative bands with rich information and weak correlation. Then, the differentials of attribute profiles are calculated by four attribute types and various filter parameters for multi-scale and multi-type spectral–spatial feature decomposition. Finally, the ideal discriminative characteristics are reserved and incorporated with genetic algorithms to cluster each differential attribute profile by dissimilarity assessment. Experiments run on a variety of genuine hyperspectral datasets including airport, beach, urban, and park scenes show that the effectiveness of the proposed algorithm has great improvement with existing state-of-the-art algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.