Abstract
Anomaly detection is an important task in hyperspectral remote sensing. Most widely used detectors, such as Reed-Xiaoli (RX), have been developed only using original spectral signatures, which may lack the capability of signal enhancement and noise suppression. In this article, an effective alternative approach, fractional Fourier entropy (FrFE)-based hyperspectral anomaly detection method, is proposed. First, fractional Fourier transform (FrFT) is employed as preprocessing, which obtains features in an intermediate domain between the original reflectance spectrum and its Fourier transform with complementary strengths by space-frequency representations. It is desirable for noise removal so as to enhance the discrimination between anomalies and background. Furthermore, an FrFE-based step is developed to automatically determine an optimal fractional transform order. With a more flexible constraint, i.e., Shannon entropy uncertainty principle on FrFT, the proposed method can significantly distinguish signal from background and noise. Finally, the proposed FrFE-based anomaly detection method is implemented in the optimal fractional domain. Experimental results obtained on real hyperspectral datasets demonstrate that the proposed method is quite competitive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.