Abstract

Abstract: Wildlife managers increasingly are using remotely sensed imagery to improve habitat delineations and sampling strategies. Advances in remote sensing technology, such as hyperspectral imagery, provide more information than previously was available with multispectral sensors. We evaluated accuracy of high‐resolution hyperspectral image classifications to identify wetlands and wetland habitat features important for Columbia spotted frogs (Rana luteiventris) and compared the results to multispectral image classification and United States Geological Survey topographic maps. The study area spanned 3 lake basins in the Salmon River Mountains, Idaho, USA. Hyperspectral data were collected with an airborne sensor on 30 June 2002 and on 8 July 2006. A 12‐year comprehensive ground survey of the study area for Columbia spotted frog reproduction served as validation for image classifications. Hyperspectral image classification accuracy of wetlands was high, with a producer's accuracy of 96% (44 wetlands) correctly classified with the 2002 data and 89% (41 wetlands) correctly classified with the 2006 data. We applied habitat‐based rules to delineate breeding habitat from other wetlands, and successfully predicted 74% (14 wetlands) of known breeding wetlands for the Columbia spotted frog. Emergent sedge microhabitat classification showed promise for directly predicting Columbia spotted frog egg mass locations within a wetland by correctly identifying 72% (23 of 32) of known locations. Our study indicates hyperspectral imagery can be an effective tool for mapping spotted frog breeding habitat in the selected mountain basins. We conclude that this technique has potential for improving site selection for inventory and monitoring programs conducted across similar wetland habitat and can be a useful tool for delineating wildlife habitats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.