Abstract

Extracting endmembers from remotely-sensed images of vegetated areas can present difficulties. In this research, we applied a recently-developed endmember-extraction algorithm based on Support Vector Machines to the problem of semi-autonomous estimation of vegetation endmembers from a hyperspectral image. This algorithm, referred to as Support Vector Machine-Based Endmember Extraction (SVM-BEE), accurately and rapidly yields a computed representation of hyperspectral data that can accommodate multiple distributions. The number of distributions is identified without prior knowledge, based upon this representation. Prior work established that SVM-BEE is robustly noise-tolerant and can semi-automatically estimate endmembers; synthetic data and a geologic scene were previously analyzed. Here we compared the efficacies of SVM-BEE, N-FINDR, and SMACC algorithms in extracting endmembers from a real, predominantly-agricultural scene. SVM-BEE estimated vegetation and other endmembers for all classes in the image, which N-FINDR and SMACC failed to do. SVM-BEE was consistent in the endmembers that it estimated across replicate trials. Spectral angle mapper (SAM) classifications based on SVM-BEE-estimated endmembers were significantly more accurate compared with those based on N-FINDR- and (in general) SMACC-endmembers. Linear spectral unmixing accrued overall accuracies similar to those of SAM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.