Abstract

SummaryThe effect of swirl on the high speed flow past blunt bodies is analysed by assuming constant density in the region between the shock wave and the body. For small swirl the stand-off distance is only slightly affected, but it is shown that there is a critical value of the swirl parameter which, if exceeded, will cause a jump in the position of the shock. This is demonstrated by solving the full constant-density equations for the flow past a sphere and by a perturbation expansion in powers of the density ratio across the shock for a more general body shape. The perturbation solution shows that the pressure coefficient on the body is constant at the critical swirl number.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call