Abstract

A parametric study of ramp-induced planar shock-wave/turbulent-boundary-layer interactions (SBLIs) is carried out at hypersonic conditions (Mach number 6.0) by means of numerical simulation of the Reynolds-averaged Navier–Stokes (RANS) equations, with the eventual goal of establishing wall temperature and Reynolds number effects. Comparison with available experimental data shows that RANS is capable of predicting the main features of hypersonic oblique SBLI, namely, typical size and distribution of the wall-surface pressure, and heat transfer. A large number of flow cases, at low () and high Reynolds number (), were computed to examine the scaling of the heat transfer over a wide range of wall temperatures. As expected, the interaction zone of hypersonic ramp-induced SBLI is reduced as the wall is cooled. A simple power law for heat transfer originally introduced by Back and Cuffel (AIAA Journal, Vol. 8, No. 10, 1970, pp. 1871–1873) is here considered to account for hypersonic ramp-induced SBLI, which is found to successfully collapse the data to the distributions obtained for supersonic, cold/hot interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.