Abstract

Computational results are presented for hypersonic viscous flow past spinning sharp and blunt cones of angle of attack, obtained with a parabolic Navier-Stokes marching code. The code takes into account the asymmetries in the flowfield resulting from spinning motion and computes the asymmetric shock shape, cross-flow and streamwise shear, heat transfer, cross-flow separation, and vortex structure. The Magnus force and moments are also computed. Comparisons are made with other theoretical analyses based on boundary-layer and boundary-region equations, and an anomaly is discovered in the displacement thickness contribution to the Magnus force when compared with boundary-layer results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call