Abstract
In the fundamental configuration studied here, a steady hypersonic free stream flows over a thin sharp aligned airfoil or flat plate with a leading-edge shock wave, and the flow field in the shock layer (containing a viscous and an inviscid layer) is steady laminar and two-dimensional, for a perfect gas without real and high-temperature gas effects. The viscous and inviscid layers are analysed and computed simultaneously in the region from the leading edge to the trailing edge, including the upstream-influence effect present, to determine the interactive flow throughout the shock layer and the positions of the shock wave and the boundary-layer edge, where matching is required. Further theoretical analysis of the shock layer helps to explain the computational results, including the nonlinear breakdown possible when forward marching against enhanced upstream influence, for example as the wall enthalpy increases towards its insulated value. Then the viscous layer is computed by sweeping methods, for higher values of wall enthalpies, to prevent this nonlinear breakdown for airfoils including the flat plate. Thin airfoils in hypersonic viscous flow are treated, for higher values of the wall enthalpies and with the upstream-influence effect, as are hypersonic inviscid flows, by modifying the computational methods used for the flat plate. Also, the behaviour of the upstream influence for bodies of relatively large thickness, and under wall velocity slip and enthalpy jump for flat plates, is discussed briefly from a theoretical point of view.Subsequent to the present work, computations based on the Navier–Stokes and on the parabolized Navier–Stokes equations have yielded excellent and good agreement respectively with the present predictions for large Mach and Reynolds numbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Fluid Mechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.