Abstract

Ubiquitin specific protease 18 (USP18) serves as a potent inhibitor of Type I interferon (IFN) signaling. Previous studies have shown that Usp18 deficient (homozygous Usp18 gene knockout) mice exhibit hydrocephalus; however, the precise molecular mechanism underlying hydrocephalus development remains elusive. In this study, we demonstrate that mice lacking both type I IFN receptor subunit 1 (Ifnar1) and Usp18 (Ifnar1/Usp18 double knockout mice) are viable and do not display a hydrocephalus phenotype. Moreover, we observed that suppression of USP18 in ependymal cells treated with IFN significantly increased cell death, including pyroptosis, and decreased proliferation. These findings suggest that heightened sensitivity to type I IFN during brain development contributes to the onset of hydrocephalus. Furthermore, they imply that inhibition of IFN signaling may hold promise as a therapeutic strategy for hydrocephalus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.