Abstract

α1-Antitrypsin functions as a ‘mousetrap’ to inhibit its target proteinase, neutrophil elastase. The common severe Z deficiency variant (Glu342 → Lys) destabilizes the mousetrap to allow a sequential protein-protein interaction between the reactive-centre loop of one molecule and β-sheet A of another. These loop-sheet polymers accumulate within hepatocytes to form inclusion bodies that are associated with juvenile cirrhosis and hepatocellular carcinoma. The lack of circulating protein predisposes the Z α1-antitrypsin homozygote to emphysema. Loop-sheet polymerization is now recognized to underlie deficiency variants of other members of the serine proteinase inhibitor (serpin) superfamily, i.e. antithrombin, C1 esterase inhibitor and α1-anti-chymotrypsin, which are associated with thrombosis, angio-oedema and emphysema respectively. Moreover, we have shown recently that the same process in a neuron-specific protein, neuroserpin, underlies a novel inclusion-body dementia, known as familial encephalopathy with neuroserpin inclusion bodies. Our understanding of the structural basis of polymerization has allowed the development of strategies to prevent the aberrant protein-protein interaction in vitro. This must now be achieved in vivo if we are to treat the associated clinical syndromes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call