Abstract

We investigated a hypersensitive and tunable terahertz (THz) wave switch based on liquid-crystal-filled non-Bragg structures. Non-Bragg structures, which consist of periodically corrugated metallic tube walls, provide spectra with very sharp rising edges, making them usable for sensitive switching. Tunability can be achieved by dynamically shifting the rising edge of a THz spectrum by using an externally applied magnetic field to change the orientations of the nematic liquid crystal (E7) molecules. The simulated results revealed that the switch effects are hypersensitive and tunable in the THz frequency range and that such switches could be applicable in future THz systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.