Abstract

Decay of double-K-shell-vacancy states in xenon atoms, created in the decay of $^{131}\mathrm{Cs}$, was investigated. The measurements were performed with a pair of germanium detectors, a fast-slow coincidence system, and a three-parameter pulse-height analyzer. In the analysis of the two-dimensional ${\mathit{E}}_{1}$-${\mathit{E}}_{2}$ spectrum, improved least-squares routines were applied. The following results were derived: the probability of creation of a double K-shell vacancy per $^{131}\mathrm{Cs}$ decay, ${\mathit{P}}_{\mathit{K}\mathit{K}}$=(1.48\ifmmode\pm\else\textpm\fi{}0.35)\ifmmode\times\else\texttimes\fi{}${10}^{\mathrm{\ensuremath{-}}5}$; the hypersatellite energy shifts ${\mathrm{\ensuremath{\Delta}}}^{\mathit{h}}$(K\ensuremath{\alpha})=(653\ifmmode\pm\else\textpm\fi{}20) eV, ${\mathrm{\ensuremath{\Delta}}}^{\mathit{h}}$(K${\mathrm{\ensuremath{\beta}}}_{1}$)=(834\ifmmode\pm\else\textpm\fi{}39) eV, and ${\mathrm{\ensuremath{\Delta}}}^{\mathit{h}}$(K${\mathrm{\ensuremath{\beta}}}_{2}$)=(903\ifmmode\pm\else\textpm\fi{}81) eV; the average values of the satellite energy shifts due to the presence of an ${\mathit{L}}_{3}$- or ${\mathit{L}}_{2}$-shell spectator vacancy ${\mathrm{\ensuremath{\Delta}}}^{\mathit{s}}$(K\ensuremath{\alpha}${\mathit{L}}^{\mathrm{\ensuremath{-}}1}$)=(80\ifmmode\pm\else\textpm\fi{}15) eV, ${\mathrm{\ensuremath{\Delta}}}^{\mathit{s}}$(K${\mathrm{\ensuremath{\beta}}}_{1}$${\mathit{L}}^{\mathrm{\ensuremath{-}}1}$)=(169\ifmmode\pm\else\textpm\fi{}34) eV, and ${\mathrm{\ensuremath{\Delta}}}^{\mathit{s}}$(K${\mathrm{\ensuremath{\beta}}}_{2}$${\mathit{L}}^{\mathrm{\ensuremath{-}}1}$)=(261\ifmmode\pm\else\textpm\fi{}81) eV; the intensity ratios of the hypersatellite transitions, I(K${\mathrm{\ensuremath{\alpha}}}_{2}^{\mathit{h}}$)/I(K${\mathrm{\ensuremath{\alpha}}}_{1}^{\mathit{h}}$)=0.94\ifmmode\pm\else\textpm\fi{}0.18, I(K${\mathrm{\ensuremath{\beta}}}_{1}^{\mathit{h}}$)/I(K${\mathrm{\ensuremath{\alpha}}}_{1}^{\mathit{h}}$)=0.36\ifmmode\pm\else\textpm\fi{}0.06, and I(K${\mathrm{\ensuremath{\beta}}}_{2}^{\mathit{h}}$)/ I(K${\mathrm{\ensuremath{\alpha}}}_{1}^{\mathit{h}}$)=0.09\ifmmode\pm\else\textpm\fi{}0.04; the intensity ratios of the satellite transitions I(K${\mathrm{\ensuremath{\alpha}}}_{2}$${\mathit{L}}^{\mathrm{\ensuremath{-}}1}$)/I(K${\mathrm{\ensuremath{\alpha}}}_{1}$${\mathit{L}}^{\mathrm{\ensuremath{-}}1}$)=0.44\ifmmode\pm\else\textpm\fi{}0.10 and 0.44\ifmmode\pm\else\textpm\fi{}0.09 for an ${\mathit{L}}_{3}$ and ${\mathit{L}}_{2}$ spectator vacancy, respectively; and the intensity ratios of some other satellite transitions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call