Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is characterized by plexiform vascular lesions, which are hypothesized to arise from deregulated growth of pulmonary artery endothelial cells (PAEC). Here, functional and molecular differences among PAEC derived from IPAH and control human lungs were evaluated. Compared with control cells, IPAH PAEC had greater cell numbers in response to growth factors in culture due to increased proliferation as determined by bromodeoxyuridine incorporation and Ki67 nuclear antigen expression and decreased apoptosis as determined by caspase-3 activation and TdT-mediated dUTP nick end labeling assay. IPAH cells had greater migration than control cells but less organized tube formation in in vitro angiogenesis assay. Persistent activation of signal transducer and activator of transcription 3 (STAT3), a regulator of cell survival and angiogenesis, and increased expression of its downstream prosurvival target, Mcl-1, were identified in IPAH PAEC. A Janus kinase (JAK) selective inhibitor reduced STAT3 activation and blocked proliferation of IPAH cells. Phosphorylated STAT3 was detected in endothelial cells of IPAH lesions in vivo, suggesting that STAT3 activation plays a role in the proliferative pulmonary vascular lesions in IPAH lungs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Lung Cellular and Molecular Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.