Abstract

3D printing by stereolithography (SLA) typically leads to low surface area materials, limiting the application of this advanced manufacturing technique for the extraction of environmental pollutants. Here, a simple and efficient procedure to immobilize highly porous materials on SLA 3D printed devices has been developed using a hypercrosslinked pyrrole-derived hyperporous carbon (HCP-carbon) with a surface area of 3361m2g−1. The HCP-carbon is directly immobilized to the soft and sticky surface of non-post cured SLA 3D printed devices. The HCP-carbon becomes permanently immobilized to the 3D printed device after UV post curing, obtaining a highly robust and efficient support for the removal of pollutants from water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call