Abstract

The feasibility of hyperpolarized [2-13C, 3-2H3]pyruvate for probing gluconeogenesis in vivo was investigated in this study. Whereas hyperpolarized [1-13C]pyruvate has clear access to metabolic pathways that convert pyruvate to lactate, alanine, and bicarbonate, its utility for assessing pyruvate carboxylation and gluconeogenesis has been limited by technical challenges, including spectral overlap and an obscure enzymatic step that decarboxylates the labeled carbon. To achieve unambiguous detection of gluconeogenic products, the carbonyl carbon in pyruvate was labeled with 13C. To prolong the T1 relaxation time, [2-13C, 3-2H3]pyruvate was synthesized and dissolved with D2O after dynamic nuclear polarization. The T1 of [2-13C, 3-2H3]pyruvate in D2O could be improved by 76.9% (79.6 s at 1 T and 74.5 s at 3 T) as compared to [2-13C]pyruvate in water. Hyperpolarized [2-13C, 3-2H3]pyruvate with D2O dissolution was applied to rat livers in vivo under normal feeding and fasting conditions. A gluconeogenic product, [2-13C]phosphoenolpyruvate, was observed at 149.9 ppm from fasted rats only, highlighting the utility of [2-13C, 3-2H3]pyruvate in detecting key gluconeogenic enzyme activities such as pyruvate carboxylase and phosphoenolpyruvate carboxykinase in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.