Abstract

Hyperpolarization with the dissolution dynamic nuclear polarization (dDNP) technique yields > 10,000-fold signal increases for NMR-active nuclei (e.g. 13C). Hyperpolarized 13C-labeled metabolic tracer molecules thus allow real-time observations of biochemical pathways in living cellular systems without interfering background. This methodology lends itself to the direct observation of altered intracellular reaction chemistry imparted for instance by drug treatment, infections, or other diseases. A reoccurring challenge for longitudinal cell studies of mammalian cells with NMR and dDNP-NMR is maintaining cell viability in the NMR spectrometer. 3D cell culture methods are increasing in popularity because they provide a physiologically more relevant environment compared to 2D cell cultures. Based on such strategies a mobile 3D culture system was devised. The clinical drug etoposide was used to treat cancer cells (HeLa) and the resulting altered metabolism was measured using hyperpolarized [1–13C]pyruvate. We show that sustaining the cell cultivation in cell incubators and only transferring the cells to the NMR spectrometer for the few minutes required for the dDNP-NMR measurements is an attractive alternative to cell maintenance in the NMR tube. High cell viability is sustained, and experimental throughput is many doubled.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.