Abstract

The current clinical standard for functional imaging of patients with lung ailments is nuclear medicine scintigraphy and Single Photon Emission Computed Tomography (SPECT) which detect the gamma decay of inhaled radioactive tracers. Hyperpolarized (HP) Xenon-129 MRI (XeMRI) of the lungs has recently been FDA approved and provides similar functional images of the lungs with higher spatial resolution than scintigraphy and SPECT. Here we compare Technetium-99m (99mTc) diethylene-triamine-pentaacetatescintigraphy and SPECTwith HP XeMRI in healthy controls, asthma, and chronic obstructive pulmonary disorder (COPD) patients. 59 subjects, healthy, with asthma, and with COPD, underwent 99mTc scintigraphy/SPECT, standard spirometry, and HP XeMRI. XeMRI and SPECT images were registered for direct voxel-wise signal comparisons. Images were also compared using ventilation defect percentage (VDP), and a standard 6-compartment method. VDP calculated from XeMRI and SPECT images was compared to spirometry. Median Pearson correlation coefficient for voxel-wise signal comparison was 0.698 (0.613-0.782) between scintigraphy and XeMRI and 0.398 (0.286-0.502) between SPECT and XeMRI. Correlation between VDP measures was r=0.853, p<0.05. VDP separated asthma and COPD from the control group and was significantly correlated with FEV1, FEV1/FVC, and FEF 25-75. HP XeMRI provides equivalent information to 99mTc SPECT and standard spirometry measures. Additionally, XeMRI is non-invasive, hence it could be used for longitudinal studies for evaluating emerging treatment for lung ailments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call