Abstract

We investigated the characteristics of hyperpolarized (HP) (129)Xe magnetic resonance (MR) imaging obtained from balanced steady-state free precession (SSFP) measurement of mouse lungs, especially under spontaneous breathing, and compared the results with those obtained using traditional spoiled gradient echo (SPGR) method, focusing on improved signal-to-noise ratio (SNR) and reduced total acquisition time. We calculated magnetization response of the HP (129)Xe gas for the balanced SSFP sequence under spontaneous breathing to derive optimal conditions for the imaging experiment. We then placed an anesthetized mouse in the magnet (9.4T) supplied with oxygen gas and a mixture of HP (129)Xe gas supplied from a continuous-flow hyperpolarizing system. We obtained an axial plane image of the lung through balanced SSFP and SPGR sequences, changing the various magnetic resonance (MR) imaging parameters, and measured the SNR of these images. We demonstrated the clear dependence of image intensity on flip angle and number of shots. The SNR was higher in balanced SSFP than in SPGR and 2.3-fold higher compared at each maximum. In contrast, total acquisition time in balanced SSFP was shortened to about one-eighth that of SPGR using a one-shot acquisition mode. In HP (129)Xe MR imaging of the lung of a spontaneously breathing mouse, balanced SSFP sequence with multi-shot and centric order acquisition provides higher SNR in a shorter acquisition time than SPGR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call