Abstract
Neuropathic pain is thought to be mediated by aberrant impulses from sensitized primary afferents, and the temporal summation of the discharges might also influence nociceptive processing. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels (Ih current) generate rhythmic activity in neurons within the central nervous system and contribute to nociceptors excitability in neuropathic pain. We searched for single fibres with ectopic spontaneous discharges from an invitro preparation in mice containing a neuroma formed in a peripheral branch of the saphenous nerve together with the undamaged branches. Both damaged (axotomized) and undamaged fibres (putative intact) developed ectopic spontaneous activity with different temporal spike trains: Clock-like, Irregular or Bursts. The Ih current blocker, ZD7288, significantly suppressed ectopic spontaneous discharges in nociceptive fibres (3/5 Aδ- and 24/31 C-units and 1 nonclassified) by 64%. Additionally, ZD7288 changed the spike patterns of 5/7 Clock-like and 3/4 Burst units to Irregular. Exogenous cAMP produced a significant ~65% increase in the ectopic firing in 5 Irregular fibres, which was restored by ZD7288. In six additional fibres (three Clock-like and three Irregular), exogenous cAMP had no further effect, but co-application with ZD7288 decreased their discharge by half. These units showed significant higher levels of discharges than the cAMP-sensitive ones. Our data suggest that HCN channels modulate ectopic spontaneous firing in C-nociceptors and shape their temporal patterns of discharge which will, ultimately, modify the nociceptive message received and processed by second-order neurons. We show an involvement of HCN channels in the modulation of ectopic spontaneous discharges from C-nociceptors. This finding exposes a mechanism of nociceptive transmission enhancement and highlights the clinical relevance of peripheral HCN blockade for spontaneous pain relief during neuropathy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.