Abstract

Unsolicited emails, popularly referred to as spam, have remained one of the biggest threats to cybersecurity globally. More than half of the emails sent in 2021 were spam, resulting in huge financial losses. The tenacity and perpetual presence of the adversary, the spammer, has necessitated the need for improved efforts at filtering spam. This study, therefore, developed baseline models of random forest and extreme gradient boost (XGBoost) ensemble algorithms for the detection and classification of spam emails using the Enron1 dataset. The developed ensemble models were then optimized using the grid-search cross-validation technique to search the hyperparameter space for optimal hyperparameter values. The performance of the baseline (un-tuned) and the tuned models of both algorithms were evaluated and compared. The impact of hyperparameter tuning on both models was also examined. The findings of the experimental study revealed that the hyperparameter tuning improved the performance of both models when compared with the baseline models. The tuned RF and XGBoost models achieved an accuracy of 97.78% and 98.09%, a sensitivity of 98.44% and 98.84%, and an F1 score of 97.85% and 98.16%, respectively. The XGBoost model outperformed the random forest model. The developed XGBoost model is effective and efficient for spam email detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.