Abstract
This paper proposes a method to find the hyperparameter tuning for a deep neural network by using a univariate dynamic encoding algorithm for searches. Optimizing hyperparameters for such a neural network is difficult because the neural network that has several parameters to configure; furthermore, the training speed for such a network is slow. The proposed method was tested for two neural network models; an autoencoder and a convolution neural network with the Modified National Institute of Standards and Technology (MNIST) dataset. To optimize hyperparameters with the proposed method, the cost functions were selected as the average of the difference between the decoded value and the original image for the autoencoder, and the inverse of the evaluation accuracy for the convolution neural network. The hyperparameters were optimized using the proposed method with fast convergence speed and few computational resources, and the results were compared with those of the other considered optimization algorithms (namely, simulated annealing, genetic algorithm, and particle swarm algorithm) to show the effectiveness of the proposed methodology.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.