Abstract

Renewable energy has become a solution to the world’s energy concerns in recent years. Photovoltaic (PV) technology is the fastest technique to convert solar radiation into electricity. Solar-powered buses, metros, and cars use PV technology. Such technologies are always evolving. Included in the parameters that need to be analysed and examined include PV capabilities, vehicle power requirements, utility patterns, acceleration and deceleration rates, and storage module type and capacity, among others. PVPG is intermittent and weather-dependent. Accurate forecasting and modelling of PV system output power are key to managing storage, delivery, and smart grids. With unparalleled data granularity, a data-driven system could better anticipate solar generation. Deep learning (DL) models have gained popularity due to their capacity to handle complex datasets and increase computing power. This article introduces the Galactic Swarm Optimization with Deep Belief Network (GSODBN-PPGF) model. The GSODBN-PPGF model predicts PV power production. The GSODBN-PPGF model normalises data using data scaling. DBN is used to forecast PV power output. The GSO algorithm boosts the DBN model’s predicted output. GSODBN-PPGF projected 0.002 after40 h but observed 0.063. The GSODBN-PPGF model validation is compared to existing approaches. Simulations showed that the GSODBN-PPGF model outperformed recent techniques. It shows that the proposed model is better at forecasting than other models and can be used to predict the PV power output for the next day.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.