Abstract

BackgroundThe carotid bodies primarily serve as oxaemia sensors that affect tidal breathing. Their function has not yet been studied in infants with nocturnal hypoxaemia. This cross-sectional study aimed to characterise the hyperoxic ventilatory response (HVR) in infants and its relationship to nocturnal hypoxaemia.MethodsThe HVR was analysed in term infants aged <24 months with childhood interstitial lung disease (chILD), those with severe recurrent wheezing (wheeze), and nonrespiratory controls. The HVR timing was characterised using hyperoxia response time (HRT1), and HVR magnitude was characterised by the relative change in minute volume between normoxia and 30-s hyperoxia (VE_dH30). Time spent with an arterial haemoglobin oxygen saturation (SpO2) <90% during overnight monitoring (t90) was estimated.ResultsHVR data were available for 23 infants with chILD, 24 wheeze and 14 control infants. A significant decrease in minute volume under 30 s of hyperoxia was observed in all patients. HRT1 was shorter in chILD (5.6±1.2 s) and wheeze (5.9±1.5 s) groups than in the controls (12.6±5.5 s) (ANOVA p<0.001).VE_dH30 was increased in the chILD group (24.3±8.0%) compared with that in the controls (14.7±9.2%) (p=0.003).t90was abnormal in the wheeze (8.0±5.0%) and chILD (32.7±25.8%) groups and higher in the chILD group than in the controls (p<0.001). HRT1 negatively correlated witht90in all groups.ConclusionSignificant differences in HVR timing and magnitude were noted in the chILD, wheeze and control groups. A relationship between nocturnal hypoxaemia and HRT1 was proposed. HVR characterisation may help identify patients with abnormal nocturnalSpO2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call