Abstract

AimsPulmonary oxygen toxicity is caused by exposure to a high fraction of inspired oxygen, which damages multiple cell types within the lung. The cellular basis for pulmonary oxygen toxicity includes mitochondrial dysfunction. The aim of this study was to identify the effects of hyperoxic exposure on mitochondrial bioenergetic and dynamic functions in pulmonary cells. Main methodsMitochondrial respiration, inner membrane potential, dynamics (including motility), and distribution of mitochondrial bioenergetic capacity in two intracellular regions were quantified using cultured human lung microvascular endothelial cells, human pulmonary artery endothelial cells and A549 cells. Hyperoxic (95 % O2) exposures lasted 24, 48 and 72 h, durations relevant to mechanical ventilation in intensive care settings. Key findingsMitochondrial motility was altered following all hyperoxic exposures utilized in experiments. Inhomogeneities in inner membrane potential and respiration parameters were present in each cell type following hyperoxia. The partitioning of ATP-linked respiration was also hyperoxia-duration and cell type dependent. Hyperoxic exposure lasting 48 h or longer provoked the largest alterations in mitochondrial motility and the greatest decreases in ATP-linked respiration, with a suggestion of decreases in respiration complex protein levels. SignificanceHyperoxic exposures of different durations produce intracellular inhomogeneities in mitochondrial dynamics and bioenergetics in pulmonary cells. Oxygen therapy is utilized commonly in clinical care and can induce undesirable decrements in bioenergy function needed to maintain pulmonary cell function and viability. There may be adjunctive or prophylactic measures that can be employed during hyperoxic exposures to prevent the mitochondrial dysfunction that signals the presence of oxygen toxcity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call