Abstract

When confluent calf pulmonary arterial endothelial monolayers cultured on polycarbonate micropore membranes were exposed to hyperoxia (95% O2) for 3 days, endothelial cells became enlarged, and their permeability to 125I-labeled albumin was markedly increased. Similar changes were not observed when endothelial monolayers were exposed to hyperoxia for 1 or 2 days. Cell counting and acridine orange staining of endothelial monolayers revealed that the hyperoxia-induced increase in albumin permeability was not associated with a denuding injury or loss of cells from the monolayers. Vimentin filament staining of O2-exposed monolayers showed thickening of the perinuclear vimentin coil in some cells. Rhodamine-phalloidin staining demonstrated that hyperoxia caused a progressive alteration in the actin distribution. Two days after O2 exposure, peripheral actin bands became thinner, whereas the number of cytoplasmic stress fibers was increased. Three days after O2 exposure, peripheral actin bands of most cells were disrupted or absent. Because peripheral actin bands play an important role in maintaining the integrity of endothelial monolayers, disruption of peripheral bands by hyperoxia may in part be responsible for the observed change in permeability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.