Abstract

Primary hyperoxalurias (PH) are inborn errors in the metabolism of glyoxalate and oxalate with recessive autosomal transmission. As a result, an increased endogenous production of oxalate leads to exessive urinary oxalate excretion. PH type 1, the most common form, is due to a deficiency of the peroxisomal enzyme alanine: Glyoxylate aminotransferase (AGT) in the liver. PH type 2 is due to the deficiency of the glyoxylate reductase/hydroxypyruvate réductase, present in the cytosol of hepatocytes and leucocytes. PH type 3 is linked to the gene HOGA1, encoding a mitochondrial enzyme, the 4-hydroxy-2-oxo-glutarate aldolase. Recurrent urolithiaisis and nephrocalcinosis are the markers of the disease. As a result, a progressive dysfunction of the kidneys is commonly observed. At the stage of severe chronic kidney disease, plasma oxalate increase leads to a systemic oxalosis. Diagnostic is often delayed and it based on stone analysis, cristalluria, oxaluria determination and DNA analysis. Early initiation of conservative treatment including high fluid intake and long-term co-administration of inhibitors of calcium oxalate crystallization and pyridoxine, could efficiently prevent end stage renal disease. In end stage renal failure, a combined liver–kidney transplantation corrects the enzyme defect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call