Abstract

Hyperosmotic stress as physiologic dysfunction can reduce the cell volume and then redistribute both protein concentration and ionic strength, but its effect on liquid-liquid phase separation (LLPS) is not well understood. Here, we map the hyperosmotic-stress-induced nuclear LLPS of amyotrophic lateral sclerosis (ALS)-related proteins (fused in sarcoma [FUS], TAR DNA-binding protein 43 [TDP-43]). The dynamic and reversibility of FUS granules are continuable with the increase of hypertonic stimulation time, but those of TDP-43 granules decrease significantly. Strikingly, FUS granules, but not TDP-43 granules, contain essential chaperone Hsp40, which can protect amyloid protein from solid aggregation. Moreover, FUS nuclear granules can co-localize with paraspeckles, but not promyelocytic leukemia (PML) bodies or nuclear speckles, while TDP-43 nuclear granules cannot co-localize with the above nuclear bodies. Together, these results may broaden our understanding of the LLPS of ALS-related proteins in response to cellular stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.