Abstract

Stress factors, such as osmotic stress and genotoxic agents, activate stress kinases, whereas growth factors preferentially stimulate the structurally homologous mitogen-activated protein kinases, ERK1/2. Hyperosmolarity also has insulin-mimicking action as reflected by ERK1/2 activation and by the stimulation of glucose uptake in adipocytes. We examined to what extent hyperosmolarity activates components of the insulin receptor (IR) signalling pathway. CHO cells expressing the human IR were treated with 500 mM NaCl or 700 mM sorbitol and the activation of insulin signalling intermediates was studied. Hyperosmolarity induced tyrosine phosphorylation of the IR β-subunit, and the adaptor proteins p52-Shc, p66-Shc, and IRS1. Furthermore, the stress kinases JNK and p38 were activated. When CHO cells were transfected with a kinase-dead IR (K1030R) mutant, hyperosmolarity did not induce tyrosine phosphorylation of the IR, indicating that hyperosmolarity induced IR autophosphorylation directly, rather than inducing phosphorylation by an exogenous tyrosine kinase. A partially purified and detergent-solubilized IR was not phosphorylated in response to hyperosmolarity, suggesting that hyperosmolarity activates the receptor only when present in the plasma membrane. In cells stably expressing the kinase-dead IR, IRS1 and Shc Tyr phosphorylation was abrogated, indicating that the hyperosmolarity signalling was dependent on an active IR tyrosine kinase. In contrast, the stress kinases p38 and JNK were normally activated by hyperosmolarity in the IR-K1030R mutant. We conclude that, at least in CHO cells, hyperosmolarity signals partially through IR autophosphorylation and subsequent activation of the IR downstream targets. This may be responsible for some of the insulin-mimicking effects of hyperosmolarity. The activation of stress kinases by hyperosmolarity occurs independent of the IR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.