Abstract
Apart from soluble growth factors, various other biophysicochemical cues are known to promote chondrogenesis. Under physiological conditions, cartilage in the joint comprises a hyperosmotic and hypoxic environment. Therefore, in this study, we examined the inductive effects of hyperosmotic and/or hypoxic conditions on adipose stem cells (ASCs) and compared them with conventional TGFβ1-induction. After encapsulation in collagen type II hydrogels and specific induction, ASCs were assessed for viability, proliferation, morphology and chondrogenic differentiation potential. Viability was similar under all conditions, with low proliferative activity. After 4 days, hypoxia and/or hyperosmolarity did not affect round cell morphology, while cells were mainly stretched in the TGFβ1-induced group. At 21 days, the TGFß1-treated group had aggregated into a cell nodule. Hyperosmolarity mimicked this aggregation to a lesser extent, whereas cells under hypoxia stretched out after 21 days, with a combined effect in the hypoxic/hyperosmotic group. Both individual and combined hyperosmotic and/or hypoxic conditions significantly upregulated SOX5, SOX9, COMP and Link-p gene expression compared with the non-induced group, and to similar levels as the TGFβ1-induced group. GAG synthesis in both hydrogel and medium was increased under hypoxic conditions, whereas hyperosmolarity decreased GAG formation in the hydrogels, but increased GAG formation in the medium. We conclude that in a joint mimicking the three-dimensional (3D) micro-environment, a combination of hyperosmolarity and hypoxia is able to induce chondrogenesis to the same extent as TGFβ1. This might lead to an interesting alternative when considering short-term triggering in a one-step surgical procedure for the treatment of cartilaginous defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Tissue Engineering and Regenerative Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.