Abstract

The effects of hyperosmolar d-mannitol were studied on single frog myelinated nerve fibres previously poisoned with Caribbean ciguatoxin-1 (C-CTX-1), a new toxin isolated from the pelagic fish Caranx latus inhabiting the Caribbean region. In current-clamped myelinated axons, C-CTX-1 (50–120 nM) caused spontaneous and repetitive action potential discharges after a short delay. In addition, the toxin produced a marked swelling of nodes of Ranvier of myelinated axons that reached a steady state within about 90 min, as revealed by using confocal laser scanning microscopy. The increased excitability and the nodal swelling caused by C-CTX-1 were prevented or reversed by an external hyperosmotic solution containing 100 mM d-mannitol. Moreover, the C-CTX-1-induced nodal swelling was completely prevented by the blockade of voltage-sensitive sodium channels by tetrodotoxin (TTX). It is suggested that C-CTX-1, by increasing nerve membrane excitability, enhances Na + entry into nodes of Ranvier through TTX-sensitive sodium channels, which directly or indirectly disturb the osmotic equilibrium between intra- and extra-axonal media resulting in an influx of water that was responsible for the long-lasting nodal swelling. The fact, that hyperosmolar d-mannitol either reversed or prevented the neurocellular actions of C-CTX-1, is of particular interest since it provides the rational basis for its use to treat the neurological symptoms of ciguatera fish poisoning in the Caribbean area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call