Abstract

Background/Aims: Cardiac hypertrophy is a major predisposing factor for heart failure and sudden cardiac death. Hyperoside (Hyp), a flavonoid isolated from Rhododendron ponticum L., is a primary component of Chinese traditional patent medicines. Numerous studies have shown that Hyp exerts marked anti-viral, anti-inflammatory, anti-oxidant, anti-cancer, anti-ischemic, and particularly cardio-protective effects. However, the effects of Hyp on cardiac hypertrophy have not been explored. The aims of this study were to determine whether Hyp could protect against cardiac remodeling and to clarify the potential molecular mechanisms. Methods: Neonatal rat cardiac myocytes were isolated and treated with different concentrations of Hyp, then cultured with angiotensin II for 48 h. Mice were subjected to either aortic banding or sham surgery (control group). One week after surgery, the mice were treated with Hyp (20 mg/kg/day) or vehicle by oral gavage for 7 weeks. Hypertrophy was evaluated by assessing morphological changes, echocardiographic parameters, histology, and biomarkers. Results: Hyp pretreatment suppressed angiotensin II-induced hypertrophy in cardiomyocytes. Hyp exerted no basal effects but attenuated cardiac hypertrophy and dysfunction, fibrosis, inflammation, and oxidative stress induced by pressure overload. Both in vivo and in vitro experiments demonstrated that the effect of Hyp on cardiac hypertrophy was mediated by blocking activation of the AKT signaling pathway. Conclusion: Hyp improves cardiac function and prevents the development of cardiac hypertrophy via AKT signaling. Our results suggest a protective effect of Hyp on pressure overload-induced cardiac remodeling. Taken together, Hyp may have a role in the pharmacological therapy of cardiac hypertrophy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.