Abstract

In this work, masses and radii of neutron stars are considered to investigate the effect of nuclear symmetry energy on astrophysical observables. A relativistic mean-field model with density-dependent meson-baryon coupling constants is employed in describing the equation of state of dense nuclear matter, and the density dependencies of the symmetry energies are quoted from the recent phenomenological formulas obtained from heavy-ion data at subnuclear saturation densities. Since hyperons can take part in the $\ensuremath{\beta}$-equilibrium of the dense matter inside neutron stars, we include hyperons in our estimation and their roles are discussed in combination with that of the nuclear symmetry energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.