Abstract

Neutron stars with large masses $ \sim 2M_{\odot}$ require the hard stiffness of equation of state (EoS) of neutron-star matter. On the other hand, hyperon mixing brings about remarkable softening of EoS. In order to solve this problem, a multi-pomeron exchange potential (MPP) is introduced as a model for the universal many-body repulsion in baryonic systems on the basis of the Extended Soft Core (ESC) baryon-baryon interaction. The strength of MPP is determined by analyzing the nucleus-nucleus scattering with the G -matrix folding model. The interactions in $ \Lambda N$ , $ \Sigma N$ and $ \Xi N$ channels are shown to be consistent with experimental indications. The EoS in neutron-star matter with hyperon mixing is obtained from ESC in addition of MPP, and mass-radius relations of neutron stars are derived. The maximum mass is shown to reach $ 2M_{\odot}$ even in the case of including hyperon mixing on the basis of model-parameters determined by terrestrial experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.