Abstract

We present Λ separation energies for light hypernuclei based on chiral hyperon-nucleon interactions up to next-to-leading order. In the first part, we consider several sources of uncertainties with a focus on using different realizations of chiral hyperon-nucleon interactions to estimate three-baryon forces that enter at next-to-next-to leading order. We also demonstrate that the similarity renormalization group evolution of the hyperon-nucleon interactions induces a strong variation of the separation energies. The energies are however strongly correlated which allows one to define a preferred similarity renormalization group parameter for which hypernuclear binding energies can be predicted reliably. With these insights, we present in the second part three examples of recent applications of chiral interactions to hypernuclei. In the first application, we study the predictions for A = 4 and A = 7 hypernuclei based on the version of the hyperonnucleon interaction that yields a large hypertriton binding energy as suggested by the recent experiment of the STAR collaboration. The first predictions for A = 4 − 6 strangeness S = −2 hypernuclei are discussed in the second application. Finally, in the third application, we use the charge-symmetry breaking of A = 4 Λ separation energies to constrain the Λ-neutron interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call