Abstract

A recently introduced relativistic nuclear energy density functional, constrained by features of low-energy QCD, is extended to describe the structure of hypernuclei. The density-dependent mean field and the spin-orbit potential of a Λ-hyperon in a nucleus, are consistently calculated using the SU(3) extension of in-medium chiral perturbation theory. The leading long-range ΛN interaction arises from kaon-exchange and 2π-exchange with a Σ-hyperon in the intermediate state. Scalar and vector mean fields, originating from in-medium changes of the quark condensates, produce a sizeable short-range spin-orbit interaction. The model, when applied to oxygen as a test case, provides a natural explanation for the smallness of the effective Λ spin-orbit potential: an almost complete cancellation between the background contributions (scalar and vector) and the long-range terms generated by two-pion exchange.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.