Abstract

The combination of sports sciences theorization and social networks analysis (SNA) has offered useful new insights for addressing team behavior. However, SNA typically represents the dynamics of team behavior during a match in dyadic interactions and in a single cumulative snapshot. This study aims to overcome these limitations by using hypernetworks to describe illustrative cases of team behavior dynamics at various other levels of analyses. Hypernetworks simultaneously access cooperative and competitive interactions between teammates and opponents across space and time during a match. Moreover, hypernetworks are not limited to dyadic relations, which are typically represented by edges in other types of networks. In a hypernetwork, n-ary relations (with n > 2) and their properties are represented with hyperedges connecting more than two players simultaneously (the so-called simplex—plural, simplices). Simplices can capture the interactions of sets of players that may include an arbitrary number of teammates and opponents. In this qualitative study, we first used the mathematical formalisms of hypernetworks to represent a multilevel team behavior dynamics, including micro (interactions between players), meso (dynamics of a given critical event, e.g., an attack interaction), and macro (interactions between sets of players) levels. Second, we investigated different features that could potentially explain the occurrence of critical events, such as, aggregation or disaggregation of simplices relative to goal proximity. Finally, we applied hypernetworks analysis to soccer games from the English premier league (season 2010–2011) by using two-dimensional player displacement coordinates obtained with a multiple-camera match analysis system provided by STATS (formerly Prozone). Our results show that (i) at micro level the most frequently occurring simplices configuration is 1vs.1 (one attacker vs. one defender); (ii) at meso level, the dynamics of simplices transformations near the goal depends on significant changes in the players' speed and direction; (iii) at macro level, simplices are connected to one another, forming “simplices of simplices” including the goalkeeper and the goal. These results validate qualitatively that hypernetworks and related compound variables can capture and be used in the analysis of the cooperative and competitive interactions between players and sets of players in soccer matches.

Highlights

  • Coaches, players, and scientists have long tried to understand team behavior dynamics during a game, aiming to develop interventions and training plans that may increase team performance (Araújo and Davids, 2016; Passos et al, 2017)

  • We investigate how cooperative and competitive interactions may be captured and analyzed via multilevel hypernetworks

  • We have extended the approach by Johnson and Iravani (2007) by introducing compound variables, e.g., local dominance, which capture the structure and dynamics of cooperative and competitive interactions in the following ways: i

Read more

Summary

Introduction

Players, and scientists have long tried to understand team behavior dynamics during a game, aiming to develop interventions and training plans that may increase team performance (Araújo and Davids, 2016; Passos et al, 2017). Research in performance analysis in team sports searches for variables describing game dynamics that are: (i) useful and accessible to coaches and athletes; (ii) obtained automatically or semi-automatically from game observation; and (iii) related to team outputs, such as, match results For finding such variables it is necessary to capture the multi-leveled dynamics emerging from differential interactions between many heterogeneous parts (e.g., players), while considering potential adaptations to changing environments. In this way, teams and athletes can be seen as co-evolving subsystems that self-organize into new structures and behaviors (Johnson, 2013), i.e., they form team synergies (Araújo and Davids, 2016). We extend this player-immediate opponent distance to the closest player (opponent or not)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call