Abstract

We study hyperkahler cones and their corresponding quaternion-Kahler spaces. We present a classification of 4(n-1)-dimensional quaternion-Kahler spaces with n abelian quaternionic isometries, based on dualizing superconformal tensor multiplets. These manifolds characterize the geometry of the hypermultiplet sector of perturbative moduli spaces of type-II strings compactified on a Calabi-Yau manifold. As an example of our construction, we study the universal hypermultiplet in detail, and give three inequivalent tensor multiplet descriptions. We also comment on the construction of quaternion-Kahler manifolds that may describe instanton corrections to the moduli space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.