Abstract

Death-associated protein kinase (DAPK) is a 160-kD serine/threonine kinase known as a key molecule in interferon-γ (IFN-γ)-induced apoptosis and tumor suppression. Hypermethylation of the CpG island in DAPK inactivates the gene in a variety of human malignancies. This study aimed to detect the inactivation of DAPK in canine lymphoid tumor cells. The sequence of canine DAPK cDNA was obtained from normal dog peripheral blood mononuclear cells after reverse transcription polymerase chain reaction (RT-PCR). By rapid amplification of 5′-cDNA ends, the transcription initiation site of the DAPK gene was identified. The CpG island located upstream of the translation initiation site was identified by using a search algorithm. The methylation status of the CpG island was examined using bisulfite sequence analysis and methylation-specific PCR (MSP). The inactivation of DAPK gene was examined in 3 canine lymphoid tumor cell lines, GL-1 (B-cell leukemia), CLBL-1 (B-cell lymphoma), and CL-1 (T-cell lymphoma). DAPK mRNA expression was measured by real-time RT-PCR. IFN-γ-induced apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay. The influence of demethylation was examined with 5-aza-2′-deoxycytidine (5-aza-dC). The methylation status in 14 dogs with various lymphoid tumors was screened by MSP. A 1926-bp CpG island containing 280 CpG repeats was identified upstream of the translation start site of canine DAPK. Bisulfate sequence analysis and MSP revealed hypermethylation of the CpG island in GL-1 cells, but not in CLBL-1 or CL-1 cells. The amount of DAPK mRNA was significantly smaller in GL-1 cells than CLBL-1 and CL-1 cells. IFN-γ-induced apoptosis was detected in CLBL-1 and CL-1 cells but not in GL-1 cells. Treatment with 5-aza-dC significantly increased the amount of DAPK mRNA and IFN-γ-induced apoptosis in GL-1 cells. These results revealed the inactivation of DAPK through methylation of its CpG island in GL-1 cells. MSP showed hypermethylation of the DAPK CpG island in 5 of 8 primary B-cell lymphoma samples, but not in any of the 6 primary T-cell lymphoid tumor samples obtained from canine patients. DAPK was inactivated through hypermethylation of its CpG island in canine B-cell lymphoid tumor cells. This study will lead to the use of canine B-cell lymphoid tumors as an animal model to evaluate the efficacy of demethylating agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.